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Abstract
We report the results of measurements of the thermoelectric power S of
stoichiometric CaB6 and vacancy-doped Ca1−δB6 between 5 and 300 K. The
thermopower for both materials is surprisingly large at room temperature.
Across the whole temperature range covered, S is negative and the temperature
dependence is most probably dictated by band-structure effects. The
phenomenological interpretation of our data involves a calculation of S(T ),
using the Boltzmann equation in the relaxation time approximation and
assuming a band of defect states in proximity to the lower edge of the conduction
band. Good agreement with our data is found by considering acoustic phonon
and ionized impurity scattering for the electrons in the conduction band, which
is well separated from the valence band.

1. Introduction

Recent experiments on hexaborides with divalent metal cations of the alkaline-earth series,
namely Ca, Sr, and Ba, have revealed some unusual physical properties of these materials. In
particular, an itinerant type of weak ferromagnetic order, stable up to temperatures between
600 and 900 K, has been observed in CaB6 and related alloys in a narrow range of electron
doping [1–3]. The electronic properties of alkaline-earth hexaborides place these materials
close to a metal–insulator transition [2, 4]. This has been supported theoretically by LDA
calculations of the electronic structure of divalent hexaborides which indicate that, with the
exception of a small region around the X point of the cubic Brillouin zone, the valence and the
conduction bands are separated by a large gap of several electron volts [5]. The slight band
overlap is reduced if the inter-octahedron B–B bond distances increase; this finally results
in the opening of a gap over the entire momentum space. It has also been predicted that
the transport properties of SrB6 may be strongly dependent on doping, with changes from a
p-type to an n-type metal induced by slight shifts of the Fermi energy around the zero-doping
value [5]. These observations have led to the speculation that the ground state of undoped
divalent hexaborides may be characterized by a Bose condensate of bound electron–hole pairs,
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or excitons [6–8]. Weak ferromagnetism may then develop because of a spontaneous time-
reversal symmetry breaking via doping. More recent GW -calculations of the single-particle
excitation spectrum of CaB6, however, have led to the claim that this material is not a semimetal
but a semiconductor with a minimum band gap of 0.8 eV [9]. If this possibility is considered,
the experimental observations, which suggest that binary hexaborides are close to a metal–
insulator transition, would indicate the presence of a band of defect states for itinerant charge
carriers.

Since the theoretical interpretation of the observed high-TC ferromagnetism strongly
depends on issues concerning the electronic band structure of these materials, additional
information regarding the excitation spectrum of the electrons in CaB6 is welcome. In an
attempt to resolve the uncertainties with respect to the correct description of this material,
the influence of the chemical composition on the physical properties of CaB6 has been
studied. The electrical resistivity, magnetoresistance, low-temperature specific heat, and
optical conductivity of stoichiometric and doped CaB6 samples have been investigated and
the results have been presented in a previous publication [2]. Below, we present the results of
measurements of the thermoelectric power S. While data on the electrical conductivity and
the electronic contribution to the thermal conductivity provide information on the density of
electronic states N(E) close to the Fermi energy EF, the thermopower may serve to establish
the energy derivative of N(E), i.e., an additional important detail of the electronic excitation
spectrum. One of the samples was synthesized so as to obtain material with a close-to-
stoichiometric composition, denoted as CaB6. The second sample, which we denote as
Ca1−δB6, contained a small number of vacancies on the calcium sites, inadvertently introduced
during the flux-growth procedure and leading to a certain degree of self-doping which is difficult
to control.

This paper is organized as follows: after a brief description of the sample preparation and
the experimental methods used in this investigation in section 2, we present, in section 3, the
results of our measurements and their analysis. The conclusions are presented in section 4.

2. Samples and experimental methods

Binary hexaborides can be synthesized in a narrow range of composition, with a claimed
tendency to be boron rich with concentrations of metal vacancies up to several per cent.
Stoichiometric CaB6 crystals can be obtained close to the border of the metal-rich phase
boundary [10]. For our experiments the single crystals were grown by a slow-cooling procedure
in aluminium flux [11] starting with a nominal ratio CaB3 for the stoichiometric CaB6 sample,
and with CaB12 for the metal-deficient Ca1−δB6 sample. The crystals were removed from the
flux by leaching in a concentrated sodium hydroxide solution. Subsequent etching with HNO3

was intended to remove possible surface contaminations. The samples on which our transport
measurements were made were of prism-type shape with approximate overall dimensions of
4.2 × 0.5 × 0.45 mm3 for CaB6 and 4.7 × 0.45 × 0.4 mm3 for Ca1−δB6.

The thermoelectric power S and the thermal conductivity κ of both samples were measured
simultaneously by means of a standard steady-state heat-flow technique between 5 and
300 K. Since the thermal conductivity is dominated by lattice excitations, the results of these
measurements will be presented elsewhere. A commercial 4He-gas-flow cryostat was used for
cooling the sample holder. At one end of the prism-shaped sample, the thermal contact to a
copper heat sink was achieved by using high-conductance silver epoxy. The sample heater,
consisting of a 100 � ruthenium oxide chip resistor, was attached to the other end of the
prism by the same method. Joule heating caused by heater currents of the order of a few mA
provided the necessary heat flow and hence a thermal gradient along the crystals. In order to
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Figure 1. Temperature dependence of the thermoelectric power S, for CaB6 and Ca1−δB6, on
linear scales. The solid curves represent fits to our data, as explained in the text.

measure both the temperature difference T between two contacts mounted perpendicularly
to the heat flow and the thermoelectric voltage of our samples with respect to chromel, we
used two pairs of calibrated 0.025 mm Au–Fe (0.07 at.%) versus chromel thermocouples [12].
The length of the thermocouples (10 cm) was chosen in order to reduce the heat losses through
this channel to a negligible amount. The reliability of our experimental data measured in
this way has been demonstrated in a previous publication [13], where the thermal gradient
along the sample was measured by using both chromel–gold/iron thermocouples as well as
calibrated carbon resistor thermometers in the temperature range around 2 K. In order to
minimize spurious thermal voltages, the thermocouple leads were connected to uninterrupted
copper wires reaching three home-built low-noise voltage amplifiers, mounted directly on top
of the cryostat insert.

3. Experimental results and analysis

The thermoelectric power S(T ) for both samples is shown in figure 1 on linear scales.
The negative sign of S clearly demonstrates the dominant n-type character of the crystals
investigated. The rather large values of S, if compared to typical values observed for the
thermoelectric power of common metals, are an indication for the low itinerant charge-
carrier concentration in these materials, compatible with the very low values of the
electrical conductivity reported previously [2]. The overall temperature dependence of S
is obviously non-linear, with features that are reminiscent of band-structure effects affecting
the temperature-induced variation of the thermopower of elements and crystalline alloys [14].
Nevertheless, below T ∗ = 20 and 40 K for CaB6 and Ca1−δB6, respectively, the curves exhibit
an approximately linear temperature dependence. A negative thermoelectric power varying
linearly with T is usually identified as the diffusion thermopower S of metals, where the Fermi
energy EF is located within the conduction band. In the free-electron approximation,

S = − π2k2
BT

3|e|EF/s
(1)

with EF the Fermi energy measured from the bottom of the conduction band and s a factor,
typically of the order of unity, describing the energy dependence of the scattering time



1038 K Giannò et al

τ ∝ Es−3/2 for the scattering mechanism dominating the low-temperature behaviour [14].
From the average slope of S(T ) below T ∗, we may thus calculate a rescaled Fermi energyEF/s.
These values are EF/s = 4.5 and 8.7 meV for CaB6 and Ca1−δB6, respectively. Consideration
of the entire temperature dependence of S, in particular the abrupt slope changes of S(T )
around T ∗, suggests that ultimately S(T ) cannot be explained by simply taking into account
electronic states in the conduction band alone. In the following, we try to identify the possible
reasons for the measured departure from linearity in the temperature dependence of S.

With the common assumption that the current densities j and w for electrical and thermal
transport, respectively, respond linearly to their driving forces, we can write

j = e2L0E − e

T
L1 ∇rT

w = eL1E − 1

T
L2 ∇rT

(2)

where E is the external electric field and ∇rT is the temperature gradient. In equation (2),
the transport coefficients Li (i = 0, 1, 2) explicitly fulfil the Onsager relations [15]. For
j = 0, we obtain w = −κel ∇rT and E = S ∇rT , whereas for ∇rT = 0, we get j = σE.
These are the equations defining the electronic contribution to the thermal conductivity κel, the
thermoelectric power S, and the electrical conductivity σ , such that

κel = 1

T

(
L2 − L2

1

L0

)
(3a)

S = − 1

|e|T
L1

L0
(3b)

σ = e2L0. (3c)

The integrals Li (i = 0, 1, 2) are defined as

Li = −
∫ +∞

−∞
σ̃ (E)(E − EF)

i ∂f0

∂E
dE (4)

with σ̃ (E) representing the conductivity spectrum, including all system-dependent features.
By partial integration of equation (4) and by using the Sommerfeld expansion scheme, we get

S = −π2k2
BT

3|e|
(
∂ ln σ̃ (E)

∂E

)
E=EF

(5)

which approximates equation (3b) very well at temperatures kBT 	 EF. Since we intend
to interpret our data over the entire temperature range covered and in view of the low values
of EF, we will not use the low-temperature approximation represented by equation (5) in our
analysis. For our purposes the general form of S shown in equation (3b) is more appropriate.

Since σ̃ (E) > 0, the coefficient L0 is strictly positive and the sign of S is determined by
the sign of the integral L1. From inspecting the integrand of L1, represented in equation (4),
and also considering equation (3b), it may be concluded that the states with energies
higher than the chemical potential, i.e., E > EF, provide a negative contribution to the
thermoelectric power, whereas those states which are located below EF contribute with the
opposite sign. At low temperatures, where only the states very close to EF contribute to
the electronic transport, the measured S-values are negative. This leads us to conclude that
σ̃ (E) must increase monotonically across EF, so the states contributing negatively to S(T )

in L1 acquire a larger weight than those located below the Fermi energy, which contribute
positively to S(T ). In order to reproduce the observed reduction of the slope of S(T ) at
T ∗ in the calculation, however, we are forced to introduce a ‘feature’ in σ̃ (E) centred at
an energy E∗ such that |E∗ − EF| ∼ kBT

∗. Since the absolute value of ∂S/∂T decreases
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Figure 2. Auxiliary quantities, relevant in our analysis of S(T ). The solid curve is the postulated
conductivity spectrum σ̃ (E) for Ca1−δB6. The various broken curves represent the value of the
integrand appearing in L1 as a function of energy for T = 50, 100, 200 K, as explained in the
text. In the inset, the integrand of L1 is shown as a function of T and E. For a given temperature,
the thermoelectric power S is proportional to the integral taken along the curves shown on the
three-dimensional surface.

above T ∗, the feature in σ̃ (E) must either reduce the negative contribution to S(T ) given
by the states above EF, or else enhance the positive contribution to S(T ) of the states
below EF.

In what follows, we assume that in our case the second possibility is realized and we add
an additional part to the σ̃ (E) spectrum, decreasing linearly with increasing energy below
EF. As an example, the complete chosen σ̃ (E) spectrum for Ca1−δB6, corresponding to the
equations (7) and (10) below, is shown as the solid curve in figure 2.

On the basis of this preliminary analysis and the model outlined above, we have calculated
the electronic transport properties of CaB6 and Ca1−δB6. The Fermi energy is fixed within a
parabolic conduction band. Close to the bottom of this band we position an additional band,
which may be interpreted as a band of defect states. This scenario is supported by recent
calculations of the electronic structure of point defects in CaB6, suggesting that the non-zero
charge-carrier concentration in the conduction band at T = 0 K is due to resonances arising
from the presence of B and B6 vacancies in the system [16]. With these assumptions, the
conductivity spectrum may be written as

σ̃ (E) = σ̃ n(E) + σ̃ p(E). (6)

For an isotropic parabolic conduction band, the Boltzmann equation in the relaxation time
approximation leads to

σ̃ n(E) =



0 (E < En)

1

3π2mn

τ(E)

(
2mn

h̄2

)3/2

(E − En)
3/2 (E > En)

(7)

where the bottom of the conduction band has been fixed atEn = 0 meV. Setting σ̃ (E) = σ̃ n(E)

in equation (5), it is easy to recover equation (1). For the effective mass of the conduction
electrons we used mn = 0.28m0 [5,9], with m0 as the free-electron mass. We only considered
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two scattering mechanisms of the charge carriers in the conduction band, i.e., scattering by
acoustic lattice vibrations, approximated by a rate [17, 18]

τ−1
lv = αE1/2T (8)

and scattering by ionized impurities with a rate [18]

τ−1
ii = βE−3/2 (9)

where α and β are two constants to be determined by the fitting procedure. If the defect states
which are forming a band below the bottom of the conduction band coexist with localized
states, the latter may act, when ionized, as scattering centres for the electrons. This justifies
considering a term τ−1

ii in the scattering rate of the electrons. Another possibility is to attribute
the rate τ−1

ii to the vacancies at the Ca2+-ion sites which would act as negatively charged
scattering centres. With the common assumption that the two scattering mechanisms do not
interfere with each other, we may use Matthiessen’s rule in the form τ = (τ−1

lv + τ−1
ii )−1 for

the electrons’ average scattering time.
For the defect band, we postulate [19]

σ̃ p(E) =
{
γ (Eme − E) (E < Eme)

0 (E > Eme)
(10)

with a mobility edge Eme and γ a constant. Since the quantities L0 and L1 which dictate the
temperature dependence of the thermopower appear in the ratio L1/L0, S depends only on the
relative magnitude of the constants α, β and γ . This allows some reduction of the number
of fitting parameters. In figure 1, the solid curves represent the results of the calculation of
S(T ). Considering the simplicity of the model and the small number of free parameters (α/γ ,
β/γ , EF, and Eme), the agreement with the experimental data is quite remarkable. The Fermi
energies which emerge from the fitting procedure amount to 14 and 28 meV for CaB6 and
Ca1−δB6, respectively, corresponding to 0 K charge-carrier densities nc of 1.1 × 1024 m−3 and
3.2 × 1024 m−3, or to 0.8 × 10−4 and 2.3 × 10−4 charge carriers per unit cell, respectively.
Preliminary results [20] of low-temperature Hall effect measurements performed on a CaB6

sample with the same resistivity as our vacancy-doped sample lead, when interpreted with a
single-band model, to a charge-carrier density of 4.2 × 1024 m−3, and are hence compatible
with our results. The value of the mobility edge Eme, introduced to reproduce the kink in
S(T ) at the observed temperatures, is approximately +8 meV for both samples. We note,
however, that this value strongly depends on the choice of the energy exponent of the low-
temperature scattering term. We have to admit that, in this sense, the result depends on the
model employed.

Our calculation of the thermoelectric power relies essentially on the model of the
conductivity spectrum (modulo a factor), which we may now test by calculating other electronic
transport properties such as the electrical resistivity ρ(T ) and comparing the results with
experimental data. In figure 3, we have plotted the rescaled electrical resistivity of CaB6

calculated with equation (3c), together with the experimental data obtained on two samples
of the same batch. We emphasize here that the continuous line is not a fit to experimental
results but a consequence of our description of the thermoelectric power by using a two-band
model as described above. The temperature dependence of the calculated ρ(T ) reproduces,
at least qualitatively, the salient temperature-dependent features of the experimental data. Our
calculations show that the rapid decrease of ρ(T ) above 100 K may be obtained by activating
the electrons which are residing in a defect band located at the edge of the conduction band. It
seems difficult to reconcile our data with the excitonic scenario [6–8] which has been suggested
to explain the high-TC ferromagnetism in these materials.
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Figure 3. The solid curve represents the expected temperature dependence of the electrical
resistivity of CaB6 which is based on the postulated conductivity spectrum σ̃ (E), as explained in
the text. Also shown in the figure as dash–dotted and broken curves are the measured temperature
dependencies of the resistivities of two samples [21] originating from the same batch as the CaB6
sample measured in this investigation.
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Figure 4. The ratio κel/σT as a function of temperature, calculated by using equations (3a)
and (3c), and the fit parameters resulting from our analysis of S(T ) for CaB6 (solid curve)
and Ca1−δB6 (dashed curve). The horizontal dashed–dotted curve represents the temperature-
independent Lorenz number L̃0 = 2.45 × 10−8 V2 K−2.

By using equations (3c), (4), and (7), combined with the measured resistivity curves shown
in figure 3, we conclude that the mean free path lF = h̄kFτ(EF)/mn of the conduction electrons
in CaB6 is less than 100 Å. The same length is obtained, obviously, by employing the Drude
formula σ = ne2τ/mn and by using n = nc, the value cited above for the charge-carrier
concentration of CaB6. Since the electrons’ wavevector at the Fermi energy is of the order
of 10−2 Å−1, it seems reasonable to assume that the Ioffe–Regel criterion for localization
(kFlF < 1) is close to being fulfilled in CaB6.
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A measure for the electronic contribution to the thermal conductivity is given by the
quantity L∗ = κel/σT , which can be calculated from equations (3a) and (3c). Just like the
thermoelectric power S, L∗ depends only on the relative magnitude of the constants α, β,
and γ . In a degenerate one-band model, the value

κel/σT = L̃0 = π2

3

(
kB

e

)2

(11)

is denoted as the Lorenz number. In figure 4 we plot the temperature dependence of L∗,
calculated from the fitting parameters provided by our analysis of S(T ), together with the
value L̃0 = 2.45 × 10−8 V2 K−2. As expected, κel/σT is equal to the Lorenz number at very
low temperatures. This is so because only the electrons of the conduction band contribute
to the transport. The value L∗ becomes larger than L̃0 at those temperatures at which the
impurity states start to contribute to κel. At the warm end of the crystal, more defect states are
excited across the Fermi energy than at the cold end, where additional quasiparticles release
their excitation energy. It will be demonstrated in a separate publication that despite the
enhancement of L∗, the contribution of the electrons to the measured thermal conductivity is
negligible.

4. Summary and conclusions

We have measured the thermoelectric power of close-to-stoichiometric and vacancy-doped
CaB6 between 5 and 300 K. The high negative values of the thermoelectric power S(T )
for both materials indicate a low concentration of itinerant n-type charge carriers. We have
achieved a reasonable interpretation of S(T ) by using a relaxation time approximation of
Boltzmann’s equation, by considering a sizable gap between valence and conduction band
states, and by postulating the existence of an additional term in the conductivity spectrum
which may be related to the existence of a band of defect states in proximity to the lower edge
of the conduction band.

Acknowledgments

We thank R Monnier and M E Zhitomirsky for stimulating discussions. This work was
financially supported by the Schweizerische Nationalfonds zur Förderung der Wissenschaft-
lichen Forschung.

References

[1] Young D P, Hall D, Torelli M E, Fisk Z, Sarrao J L, Thomson J D, Ott H R, Oseroff S B, Goodrich R G and
Zysler R 1999 Nature 397 412

[2] Vonlanthen P, Felder E, Degiorgi L, Ott H R, Young D P, Bianchi A D and Fisk Z 2000 Phys. Rev. B 62 10 076
[3] Ott H R, Gavilano J L, Ambrosini B, Vonlanthen P, Felder E, Degiorgi L, Young D P, Fisk Z and Zysler R 2000

Physica B 281+282 423
[4] Ott H R, Chernikov M, Felder E, Degiorgi L, Moshopoulou E G, Sarrao J L and Fisk Z 1997 Z. Phys. B 102 337
[5] Massidda S, Continenza A, de Pascale T M and Monnier R 1997 Z. Phys. B 102 83
[6] Zhitomirsky M E, Rice T M and Anisimov V I 1999 Nature 402 251
[7] Balents L and Varma C M 2000 Phys. Rev. Lett. 84 1264
[8] Barzykin V and Gor’kov L P 2000 Phys. Rev. Lett. 84 2207
[9] Tromp H J, van Gelderen P, Kelly P J, Brocks G and Bobbert P A 2000 Phys. Rev. Lett. 87 016401

[10] Spear K E 1977 Boron and Refractory Borides (Berlin: Springer) p 442
[11] Fisk Z and Remeika J P 1989 Growth of single crystals from molten metal fluxes Handbook on the Physics and

Chemistry of Rare Earths vol 12, ed K A Gschneidner and L Eyring (New York: Elsevier) pp 53–71



Low-temperature thermoelectric power of CaB6 1043

[12] Bougrine H and Ausloos M 1995 Rev. Sci. Instrum. 66 199
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